Help build a timeline of visual corrective technologies and innovations to aid blind persons

"Making Matrix for magazine for blind." Photograph from glass negative, between ca. 1900 and ca. 1915. Image depicts a man at the New York Institute for the Blind using a Stereograph, a machine for embossing zinc plates with Braille, to use as publishing masters.

“Making Matrix for magazine for blind.” Photograph from glass negative, between ca. 1900 and ca. 1915. Image depicts a man at the New York Institute for the Blind using a Stereograph, a machine for embossing zinc plates with Braille, to use as publishing masters. George Grantham Bain Collection, Library of Congress, Prints and Photographs Division, Washington, D.C., USA.

For the upcoming GLIMPSE journal issue on the topic of Blindness, GLIMPSE correspondent Nadej Giroux has drafted a fascinating timeline of corrective technologies and innovations to address blindness.

We welcome your feedback and ideas (supported by citations, please!) on this draft.

The final version will be published in GLIMPSE issue #10, with a full bibliography and attribution to those who contribute!

Selected Dates in Vision:
Corrective Technologies and Innovations

ca.1286 — First glasses are created in Italy by the Dominican friar, Giordano da Pisa.

1508 – Leonardo da Vinci is first to introduce the concept of “contact lens” in his Codex of the eye, Manual D. Though none are produced at the time, the concept explored the idea of directly increasing corneal power of the eye.

1784 – Benjamin Franklin writes a letter to George Whatley, which describes his recent invention of “split double spectacles,” or bifocal lens glasses.

1786 – Valentin Haüy publishes a book titled An Essay on the Education of the Blind, in which he describes a process wherein the typographical characters used on a printing press would emboss letters upon the wet paper medium, thus creating a tactile font.

1823 – Creation of the first Fresnel lens, as attributed to Augustin-Jean Fresnel. Fresnel lenses are different from the regular spherical lens of a standard magnifying glass in that the former can be much thinner due to its structure, which is comprised of a set of thin raised concentric sections. As sight aids, Fresnel lens technology has been used to create flat magnification sheets that can be placed over a TV screen, helping to magnify the image.

1829 – Louis Braille publishes a book titled Method of Writing Words, Music and Plainsong by Means of Dots for Use by the Blind and Arranged for Them, exhibiting and explaining the original Braille type in French that is based on dots. More that half a century later, Braille type is introduced in Britain.

1837 – August Seebeck, classifies two distinct types of color blindness and is first suggest that the condition can be augmented with corrective lenses.

1851 – Hermann von Helmholtz invents the first ophthalmoscope, calling it an “eye mirror,” which is used to illuminate the interior of the eye behind the pupil.

1888 – Adolf Gaston Eugen Fick produces and fits the first successful pair of contact lenses. They are made of heavy blown glass with a dextrose solution inside. Although the original Fick lenses were a breakthrough, they were rather bulky and could only be worn for several hours at a time.

1905 – Eduard Zirm performs the first successful corneal graft surgery, by transplanting corneal tissue and partially restoring sight to a blind man named Alois Glogar.

1949 – Sir Harold Ridley performs the first-ever successful implantation of intraocular lens, a procedure that many contemporary ophthalmologists considered impossible at the time.

1980s – Scanning Laser Opthalmoscope is developed to view microscopic layers of the retina of the living eye, and aids in diagnosing retinal disorders.

1999 – Professor Ingo Potrykus invents Golden Rice. This genetically engineered varietal was designed to contain beta carotene, which, when consumed is converted to vitamin A in the human body. Since vitamin A deficiency is linked to blindness, especially in the developing countries, the Golden Rice, along with Orange-fleshed sweet potato, are examples of biofortification tools that aim to prevent vision problems linked to VAD in the future.

2001 – ChromaGen lens human subjects study is published in Ophthalmic and Physiological Optics. The study used the ChromaGen brand color blindness corrective lenses in a two-week experiment that yielded positive subjective results in its wearers, among which were the significant reduction of Ishihara error rates, the later being the most common color blind test of circles and dots of varying sizes and with numbers represented in contrasting colors.

2002 – Argus Retinal Prosthesis is developed by Second Sight TM. This bionic eye project created a product that is a retinal prosthetic system, which induces visual acuity of blind patients by means of electrical stimulation to the retina, bypassing the damaged photoreceptors. With an aid of compact camera and video processing unit (VPU), the device “sends” the scene captured via camera though a cable to the VPU, to reconstruct the visual information for the Argus-II wearer. In September 2012, FDA recommended the approval of the second-generation Argus-II device, following several successful clinical trials in Europe, Mexico and United States.

2005 – Elizabeth Goldring, artist, poet, and head of the Vision Group at the Center for Advanced Visual Studies at the Massachusetts Institute of Technology, leads a team of engineers and physicians in the development and first clinical trials of the Seeing Machine Camera (SMC). The device uses liquid crystal display (LCD) and light-emitting diode (LED) technologies to affordably and portably replicate principles of the industrial-grade Scanning Laser Opthalmoscope. The SMC projects imagery directly onto the retina with highly-focused, bright light, avoiding the normal distortions and refractions of the impaired eye. The SMC allows people with a visual acuity of 20/70 or less to see things they would otherwise be unable to see (including small details of facial features), and to produce photographs of what they see.

2009 – Gene therapy is shown to successfully cure color blindness in two squirrel monkeys. The therapy worked by increasing the red end of the spectrum sensitivity of cone cells, effectively restoring color vision in the study’s subjects. The results of the study suggest further implication for treating human color blindness in the future.

2010 – First success with biosynthetic cornea transplantation procedures is reported by Fagerholm et al. of Linkoping University in Sweden. The development of the biosynthetic corneas rose out of shortage of donated corneas readily available for transplantation. The corneas in the Fagerholm’s lab were produced by injecting the human gene, responsible for collagen production into a type of yeast cells that were later molded into the corneal shape.

2012 – Prosthetics + Mouse retina code

2013 – Implantable telescope for age-related macular degeneration